Enyne[3]cumulene. Synthesis and Mode of Aromatization

Kenshu Fujiwara, Hiromi Sakai, and Masahiro Hirama*

Department of Chemistry, Faculty of Science, Tohoku University, Sendai **980,** *Japan*

Received December 17, 1990

Summary: The noncyclic cross-conjugated diene-diyne system **4** undergoes the thiol-triggered vinylogous propargylic rearrangement (vinylogous S_N2' reaction) in the presence of amine leading to isolable enyne[3]cumulene **5,** which is capable of not only Bergman-type cyclization but also $[2 + 2]$ cycloaddition reaction to produce benzocyclobutane derivative **14** when heated.

Enyne[3]cumulene derivative **2** is a proposed intermediate' leading to dehydroindene 3 through Bergman-type cyclization2 in the aromatization of chromophore **1** of **an**titumor neocarzinostatin (NCS);³ diradical 3 is believed to abstract hydrogen from deoxyribose backbone of DNA strand (Scheme **I).4** While the intermediacy of **2** was supported by low-temperature ¹H NMR measurements^{1c} and the related enynallene system has been recently synthesized and characterized, $5,6$ there is no precedent for a conjugated enynecumulene system. We report herein the first synthesis of such a compound, **5,** and its thermal behavior.

Cross-conjugated dienediyne 4^{7,8} was designed as a precursor to **5** that was expected to undergo a vinylogous propargylic rearrangement.^{1a,9} Preliminary experiments indicated that the dimethyl substituents on C11 are necessary to prevent direct S_N^2 reaction at C11.¹⁰ Synthesis of **4** was carried out by employing standard methodology78 **as** shown in Scheme 11. Silylation of alcohol **67b*8** (92%), metalation, and condensation with acetone gave alcohol 8 in 91% yield. Its palladium-mediated coupling^{8,11} with

(1) (a) Myers, A. G. *Tetrahedron Lett.* **1987,28,4493.** (b) Myers, A. G.; Proteau, P. J.; Handel, T. M. J. Am. Chem. Soc. 1988, 110, 7212. (c) Myers, A. G.; Proteau, P. J. *J. Am. Chem. Soc.* 1989, 111, 1146.

(2) (a) Darby, N.; Kim, C. U.; Salatin, J. A,; Shelton, K. W.; Takada, S.; Masamune, S. *J. Chem. SOC. D* **1971,1510.** (b) Jones, R. R.; Bergman, R. G. *J. Am. Chem.* SOC. **1972,94,660.** (c) Mayer, J.; Sondheimer, F. *J. Am. Chem.* SOC. **1966,88,602.**

(3) Ishida, N.; Miyazaki, K.; Kumagai, K.; Rikimaru, M. *J. Antibiot.* **1965, 18,08.**

(4) Henaens, **0.** D.; Dewey, R. S.; Lieach, J. M.; Napier, M. A,; Reamer, R. A.; Smith, J. L.; Albers-Sch6nberg, G.; Goldberg, I. H. *Biochem. Bio-phys. Res. Commun.* **1983, 213, 638.** Kappen, L. s.; Goldberg, I. H. *Nucleic Acids Res.* **1986,** *13,* **1037.**

(6) (a) Myers, A. G.; Kuo, E. Y.; Finny, N. S. *J. Am. Chem.* SOC. **1989,** *222,* **8057.** (b) Myers, A. G.; Dragovich, P. S. *Ibid.* **1989, 211, 9130.**

(6) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. *Tetrahedron Lett.* **1989,30,4996.** Nagata, R.; Yamanaka, H.; Murahashi, E.; Saito, I. *Ibid.*

1990, 32, 2907. (7) (a) Nakatani, K.; Arai, K.; Hirayama, N.; Matauda, F.; Terashima, **5.** *Tetrahedron Lett.* **1990, 32, 2323.** Krebs, A.; Wehlage, T.; Kramer, C.-P. *Ibid.* **1990,31,3633.** (b) For related studies on 10-membered ring derivatives, see: Hirama, M.; Fujiwara, K.; Shigematu, K.; Fukazawa, *Y. J. Am. Chem.* SOC. **1989,211,4120.** Fujiwara, K.; Kurisaki, A.; Hirama, M. *Tetrahedron Lett.* **1990,** *32,* **4329.**

(8) For related 9-membered ring derivatives, see: Wender, P. A.;
Harmata, M.; Jeffrey, D.; Mukai, C.; Suffert, J. *Tetrahedron Lett.* 1988, 29, 909. Wender, P. A.; Mckinney, J. A.; Mukai, C. *J. Am. Chem. Soc.* 1990, 112, 5369.

(9) (a) Zakaharova, A. I. *Zh. Obshch. Khim.* **1947, 17, 1277;** *Chem. Abstr.* **1948,42,3722.** (b) Jacobs, T. L.; Prempree, P. *J. Am. Chem. SOC.* **1967,89, 6177.** (c) Hopf, H. In *The chemistry of ketenes, allenes and related compounds;* Patai, *S.,* Ed.; John Wiley & **Sone:** Chicheater, **1980;** Part **2,** Chapter **20,** p **779** and references therein.

(10) Numbered temporarily **as** shown in Scheme I1 through the **text** fot the convenience.

^a Reagents and conditions: (i) TESOTf (1.3 equiv), 2,6-lutidine **(2.5 equiv), CH₂Cl₂, 0 °C, 1 h; (ii) EtMgBr (1.8 equiv), THF, 50 °C, 50** min; then acetone (3.0 equiv), room temperature, **100** min; (iii) TMSCECH **(1.5** equiv), n-BuNH2 **(2.0** equiv), CUI **(0.3** equiv), Pd(PPh₃)₄ (0.05 equiv), 40 °C, 36 h; (iv) $(NO₂)₂C₆H₃COCl$ (1.3 equiv), DMAP **(2.0** equiv), CH2C12, **0** OC, **25** min; (v) n-Bu,NF **(3.2** equiv), CH3C02H **(4.0** equiv), room temperature, **58** h; (vi) MsCl **(10 equiv), DMAP (2 equiv), Et₃N (20 equiv), CH₂Cl₂, 0 °C, 5 min.**

^a Reagents and conditions: (i) $HSCH₂CO₂CH₃$ (1.5 equiv), $Et₃N$ (1 equiv), CH₃CN, 25 °C, 2 h.

(trimethylsily1)acetylene afforded **9** (89%), which was esterified to 3,5-dinitrobenzoate **10** in 98% yield, and ita silyl-bearing atoms were deprotected to 11 (96%). Deh-

⁽¹¹⁾ Sonogashira, K.; Tohda, *Y.;* Hagihara, N. *Tetrahedron* Lett. **1975, 4467.** Stephans, R. D.; Caetro, C. E. J. *Org. Chem.* **1989,28,3313.** *Cscuuu,* **L.** *J. Organomet. Chem.* **19711,93, 253.** Dieck, **H.** A.; Heck, F. R. *Ibid.* **1976, 93, 269.**

ydration according to Wender's procedure⁸ yielded E olefin **4** exclusively $(61\%)^{12}$ as an air-sensitive pale yellow oil.⁷

Although the reaction of **4** with methyl thioglycolate in chloroform in the presence of triethylamine at room temperature under an argon atmosphere did not proceed, in DMSO it quickly gave 12, a formal S_N2 product, surprisingly. In acetonitrile, however, the desired vinylogous $S_N 2'$ product **5** as a colorless liquid, was isolated in 46% yield together with a 15% yield of 12 after 2 h (Scheme III), while the yield of **12** increased when the reaction was prolonged.¹³ The enyne[3]cumulene 5 exhibiting characteristic downfield resonances (I3C NMR) of the inner carbons (C9, δ 160.2; C10, δ 151.8)¹⁴ is air-sensitive but seems to be rather stable at room temperature $(t_{1/2} \approx 2)$ days in $CDCl₃$ with air) compared with tetramethyl $[3]$ cu m ulene. 15,9c

Thermolysis of **5** in deoxygenated 1,4-cyclohexadiene (0.003 M) at 80 °C showed its first-order decay $(k = 1.8)$ \times 10⁻⁴ s⁻¹, $t_{1/2}$ = 1.1 h)¹⁶ and yielded styrene derivative 13 (19%) and benzocyclobutane derivative **14** (21%), presumably through Bergman-type cyclization² leading to diradical intermediate **15** (path a) and through [2 + 21 cycloaddition" leading to diradical **16** (path b), respectively, in addition to polymeric materials (Scheme IV). These putative radical intermediates were supported by deuterium incorporation at the relevant positions. In 1,4-cyclohexadiene- d_8 (96.6% deuterium contents at allylic positions)18 deuterium was incorporated at C2 and at C10 of 13 (16% yield) to the extent of 90% and 91%, respectively, and at C1 (>85%) and at C9 (92%) of **14** (16% $vield).^{16,19}$ When benzene was used as cosolvent with 1,4-cyclohexadiene (10:1, 80 °C),¹⁶ 13 was poduced in much less yield (4%), while the yield of **14** did not change virtually (18%). This may reflect the longer lived σ , π -diradical intermediate **16** effected by both benzylic resonance^{5a} and steric hindrance due to the gem-dimethyl group. Furthermore, **5** appears to be thermally less reactive than related acyclic enynallenes such as (Z) -3,5,6octatrien-1-yne $(k = 3.2 \times 10^{-3} \text{ s}^{-1}, \text{ at } -78 \text{ °C}).$ ^{5a,20}

In conclusion, we have demonstrated that the noncyclic cross-conjugated diene-diyne system **4** can undergo the thiol-triggered vinylogous propargylic rearrangement⁹ (vinylogous S_N^2 reaction) in the presence of amine leading to enyne[3]cumulene **5** that constitutes a simulation experiment on the proposed mechanism of thiol-triggered aromatization of neocarzinostatin chromophore **1,'** and disclosed that **5** is capable of not only Bergman-type cyclization² but also $[2 + 2]$ cycloaddition reaction to produce a benzocyclobutane derivative.

Acknowledgment. This work was made possible through funds provided by the Ministry of Education, Science and Culture, Japanese Government [Grant-in- Aid for Scientific Research on Priority Areas No. 01649503 (Multiplex Organic Systems)] and by the Mitsubishi Foundation as well **as** the CIBA-GEIGY, the Shorai, and the TERUMO Life Science Foundations.

Supplementary Material Available: Spectral data **('H NMR, 13C NMR, IR, UV,** and **HRMS** and/or **MS)** for new com**pounds 4,5,7-14** (7 **pages).** Ordering information is given on any current masthead page.

Oxidative Fragmentation of Catharanthine by Dichlorodicyanoquinone

Richard J. Sundberg,* Phyllis J. Hunt, Patrice Desos, and Kumar G. Gadamasetti *Department of Chemistry, University of Virginia, Charlottesuille, Virginia 22901 Received July 31, 1990*

Summary: Oxidation of catharanthine by DDQ leads to formation of products resulting from fragmentation of the C16-C21 bond as well as C3 and C5 dehydrogenation. Among the products are compounds containing a cyclopropane ring formed by bonding between C14 and C16. Cyclopropane ring formation *can* be **also** be **observed** from the intermediate generated by Potier-Polonovski fragmentation of catharanthine N-oxide.

⁽¹²⁾ Determined by NOE experiment between 1-H and 8-H; no NOE between 6-Hs and 8H.

⁽¹³⁾ Isolated 5 rearranged rapidly to 12 in DMSO at room temperature
in the presence of methyl thioglycolate and triethylamine.
(14) Representative spectral data of 5: ¹H NMR (400 MHz, CDCl₃)
 δ 1.99 (dddd, 1 H, $J =$ H^{6b}), 3.31 (d, 1 H, J = 15.1 Hz, SCH₂), 3.42 (br s, 1 H, H¹), 3.49 (d, 1 H, J = 15.1 Hz, SCH₂), 3.74 (s, 3 H, OCH₃), 4.15 (br d, 1 H, J = 9.0 Hz, H⁴), 5.49 (d, 1 H, J = 9.1 Hz, H⁴), 3.74 (s, 3 H, OCH₃), 4.1 (CH₃, OCH₃), 53.86 (CH, C⁴), 79.22 (C, C²), 85.28 (CH, C¹), 98.30 (CH,
C⁹), 119.78 (C, C³), 121.01 (C, C¹¹), 151.11 (C, C⁷), 151.82 (C, C¹⁰), 160.20 **(C, CB), 170.98 (C, CO,); IR (film) Y 3292,2954,2932,2852, 2100,2050, 1738, 1620, 1549, 1437, 1350, 1282, 1207, 1129, 1011, 756 cm⁻¹; UV (cy-clohexane)** λ_{max} **(log e) 334 (4.51), 303 (sh 4.22), 231 nm (3.61); EIMS (70 eV**) *m* /z 274 [33.4%, M*], 201 [8.53%, M* – (CH₂CO₂CH₃)], 167 [bp, M* – (SCH₂CO₂CH₃)]; HRMS (EI, 70 eV) calcd for C₁₆H₁₈O₂S 274.1027, **found 274.1029.** $\rm (CH_3, C^{12})$, 31.00 (CH₂, C⁵), 31.67 (CH₂, C⁵), 32.49 (CH₂, SCH₂), 52.31

⁽¹⁵⁾ Skattebel, L. *Tetrahedron* **1965,21, 1357.**

⁽¹⁶⁾ Monitored by HPLC, the first-order disappearence was also observed in other degassed solvents at 80 °C: 1,4-cyclohexadiene- d_s , $k = 1.7 \times 10^{-4}$ s⁻¹; benzene-1,4-cyclohexadiene (10:1), $k = 1.9 \times 10^{-4}$ s⁻¹; and **tetrahydrofuran,** $k = 5.4 \times 10^{-5} \text{ s}^{-1}$ **(at 65 °C).**

^{(17) (}a) Intermolecular $[2 + 2]$ cycloaddition of $[5]$ cumulene with hexafluoro-2-butyne was reported, see: Hartzler, H. D. J. Am. Chem. Soc. 1971, 93, 4527. (b) For $[2 + 2]$ cycloadditions of allenes and alkynes, see: Pa **references therein.**

⁽¹⁸⁾ Prepared by the reduction of benzene- d_6 (99.6%) with Na (2.5 equiv) in HMPA in the presence of CH₃CH₂OD (2.0 equiv) and CH₃CO₂D
(3.0 equiv) at room temperature in 36% yield (99.9% isomeric purity by
GC) after fractional distillation (cf. Whitesides, G. M.; Ehmann, W. J. *J. Am. Chem. SOC.* **1969,91,3800;** *J. Org. Chem.* **1970,35,3565).**

⁽¹⁹⁾ Extent of deuterium incorporation was determined by 400-MHz 'H NMR.

^[3] cumulenes are generally more stable than the corresponding enyne**allenes, because the eubstitution patterns and the bond angles of central** double bond are not identical between 5 and (Z)-3,5,6-octatrien-1-yne.⁵⁴.